POINTWISE ASYMPTOTICS FOR THE JUMPS OF ERGODIC
AVERAGES
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ABSTRACT. We study the pointwise asymptotic behaviour for the number of
jumps of ergodic averages as the size of the oscillations decreases to zero.
The study is carried out in the setting of Chacon-Ornstein averages. We find
that under rather general conditions there exists a pointwise almost uniform
asymptotics that relates the number and size of the jumps. The proof makes
use of Bishop’s upcrossing inequalities.

1. INTRODUCTION

It is well known that a sequence of ergodic averages can exhibit any speed of conver-
gence ([8]). This multiplicity of rates of convergence does not exclude the possibility
to obtain useful information on spatial characteristics (e.g. oscillations) of ergodic
averages. This information could be used, for example, to monitor convergence of
a sequence of ergodic averages. In this paper we describe a result on majorizing
pointwise asymptotics; results for minorizing asymptotics are also possible and are
analogous to the topic of reverse inequalities ([6]). These results will be reported
in another publication.

We first comment on the main result of the paper, precise definitions of all the
quantities involved are given elsewhere in the paper. Let J,(z) be the maximum
number of np-jumps (or oscillations) for an ergodic average at point z, the asymp-
totics we are interested is when 1 N\, 0. Under appropiate conditions we prove that
if X\ is an increasing function so that

= 1
(1) Z:lm<00,

we have the following asymptotic result when 1\ 0:

(2) To(z) 1° = 0 (M(1/n)) a.u.
where the “o (.) a.u.” notation denotes an almost uniform convergence in z.

In particular, for any given real number € > 0 and integer r > 0 the above results
implies:

(3) Ty(@) n* = o ((log, (1/n)) ... (log,_y (1/m))(log,(1/m))'*) a.u.

where we use the notation log,(z) = logo... olog(x), i.e. we have composed the
log(.) function r times.
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The proof of (2) relies mainly on Bishop’s upcrossing inequalities to establish
an integral inequality for the jumps. This is done in a geometric way by relating
upcrossings and jumps. Then, we use an argument similar to the one of Gal and
Koksma ([4], see also [1]) that allows to deduce pointwise asymptotics from integral
bounds. We work in the general setting introduced by Bishop in [2], this allows us
to obtain results for the Chacon-Ornstein averages as well as for related sequences.
Results on Cesaro averages follow as a special case.

For the case of Cesaro averages, as was observed by an anonymous referee, our

main result can be proved using a known weak (2, 2) estimative for the jumps (this
inequality is a consequence of Lemma 2 and Chebyshev inequality) and some of
the arguments in our paper. Actually, these techniques will give results for the
setting of LP spaces with 1 < p. As a comparison, notice that Theorem 2 for
the case of Cesaro averages is essentially an L? result. Presently, our techniques
do not give the LP results, Bishop’s methods need to be refined to make them
capable to extend the techniques from our paper to other L? spaces. On the other
hand, our techniques work for the setting of Chacon-Ornstein where the approach
through weak inequalities is not presently available. More generally, our approach
can be used in problems where only upcrossing inequalities are available and jump
inequalities are not known.
The paper is organized as follows. In Section 2 we introduce the basic definitions
and background results then we proceed to prove the main result of the paper,
Theorem 2. In Appendix A we prove results which are needed to obtain an ezplicit
modulus of almost uniform convergence. In Appendix B we state Bishop’s general
result on upcrossing inequalities and specialize that result to the two cases treated
in our paper.

2. POINTWISE ASYMPTOTICS FOR JUMPS

We use the following notation and assumptions: (X,F, ) is an arbitrary measure
space. Functions are assumed to be real valued and equalities and inequalities of
functions are meant in the almost everywhere sense. For the most part we work with
a positive linear contraction T' from L! to L'. Given a sequence of functions g, (z)
we will refer to the whole collection as a single object by means of g = {g,(x)}. An
admissible sequence ¢ = {qr(x)} is a collection of measurable functions that satisfy
gr(z) > 0 and T'qx < qx+1, we also assume gop > 0 a.e. Let f(z) denote an arbitrary
mesurable function for the moment; some of the results will be stated using the
abstract notation S, f(z), n = —1,0,2,... (S—1f(z) = 0) which will stand for any
of the following two sequences:

i) The Chacon-Ornstein averages S, f(z) = A, f(z) = %m These averages
specialize to Cesaro averages A, f(z) = > 1_o TFf(2)/(n + 1) if g (z) = 1

and T1 < 1.

ii) Powers of T', namely S, f(z) = P,f(z) = % This sequence is usually
:=0

studied in connection with the Chacon-Ornstein averages.

Next we make precise the meaning of the symbol “little 0” in our paper.

Definition 1. Almost Uniform Asymptotics:
Given a sequence of measurable functions a,(z) and a sequence ¢(n) the notation
an(z) = o(e(n)) au. (or lim,_, (an(z)/c(n)) = 0 a.u.) means the following: V e >
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0 there exists a measurable set A C X with pu(A°) < € and such that the sequence

ac"(—%) converges uniformly to 0 on A as n approaches oo.

Remark 1. By Egorov’s theorem almost uniform (a.u.) convergence follows from
almost everywhere convergence for finite measure spaces. Our point of emphasizing
a.u. convergence is that our results will hold in arbitrary measure spaces and that
we give explicit modulus of convergence.

Definition 2. Jumps:
Given a sequence of functions g = {gn(z)}, n = —1,0,... (g-1(z) = 0), a fixed
integer K > 0, a real number > 0 and = € X, define

‘]777K(gam) = Sup{k : E = (tr)rzo,...,k}

where £ satisfies:

—“1<tg<ti <ty <...<t, <K
and

(4) |9¢,41(z) — gt (x)| > m, forallr=0,... k-1
Also define
Jy(g, ) = sup{Jy kx(g,z) : K > 0}
the function J;(g) will be referred to as the number of n-jumps for the given se-
quence g. Results involving J,(g,2) when g,(z) equal the Cesaro averages are

developed in [5]. In [7] it is proven, among many other results, that the function
J,, is not integrable if f € L.

Definition 3. Upcrossings:

Given a sequence of functions g = {g,(2)}, n = —=1,0,... (g—1(z) = 0), an integer
K > 0, real numbers «, n > 0 and z € X define

(5) Ur/,K,oz(gam) = sup{k : C = (ur;vr)r=1,...,k.}

where the sequence ( satisfies,

(6) 1<y < <us<...<v <K

(7) gu.(z) < and gy, () > (a+1)

for r = 1,...,k. The function Uy, i (g,z) will be referred to as the number of

upcrossings through the interval [a, a + 1] (see [2]) for the given sequence g.

The following theorem allows us to derive the pointwise asymptotics in Theorem 2.
If one only wants to establish only a.e. convergence the argument is simpler.

Theorem 1. Given a sequence of nonnegative functions f; € L'(X), i =0,1,...,
a function ¢ defined on the positive integers such that

®) > [ 5@ duta) = 0(60)
=0

and @ a positive, increasing function defined on the positive integers so that for
some sequence ky < ko < ... satisfies

= kn 1
®) 2 ¢<,(a<k:)) <
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then
1

N-1
(10) Jim ) ; filz) =0 a.u.

Proof. We define

From (8) and (9) it follows that

— - ¢(kn+1)
(11) nX%/an(a:) du(z) < cnz:% ) <

We will use now the proof of Lemma 3 and its notation. Let a,, = %,
n =0,1,..., with associated sequence ¢,. Given §; > 0 and &5 > 0, there exists a
measurable set B such that u(B) < §; and an integer N» such that:

(12) an(z) <02 Vo € B°and Vn > N.

Take P, = kp,, to establish (10) it is enough to prove that:
=,
(13) WZfi(a;) <6y, Vze B andVP > P,.
¥ i=0

Let P > P» and let np be the unique integer such that k,, < P < kp,+1, then
Ny < np and from equation (12), the fact that ¢ is an increasing function on the
integers and f;(z) > 0 we obtain (13). O

Definition 4. We say that a given sequence g = {gn ()} crosses the interval [, a+
n] from left to right if there are integers —1 < n; < ng satisfying g, (z) < a and
Jno(x) > a + . Similarly for a crossing from right to left. Finally, we say that
gn(x) crosses the interval [a, « + 0] if it crosses the interval from left to right or
from right to left.

Definition 5. Set a; =i g fori =0,1,... and define U, 5 x(g,2) = Yo Unj2,k,0:(9, 7).

The following simple (but crucial) lemma states that if the sequence is bounded
from below, we can add the upcrossings to bound the number of jumps. We only
need this result for the case when the sequence g is nonnegative.

Lemma 1. Let g = {gn(z)} and gp(z) > 0 then
(14) J777K(g,.’1,') S 2 U%,K(gam)

Proof. Fix x once and for all. We will prove by induction in > 0 that given
integers —1 =ty < t; < ... <t, < K such that

(15) |9trsr (€) — gir (x)| > mforall k=0,...,r -1

and if we let k;(t,) denote the number of times g, (),k = 0,...,r, crosses the
interval [ay, a; + 17/2], then:

if k;(t,) is odd

(16) ki(tr) <2 Un/2,tr,ai (g,:v)
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and if k;(t,) is even then
(17) ki(ty) <2 Un/2,tr,ai (9,)

For simplicity set k;(—1) = 0. Given integers —1 =ty < t1 < ... < tp41 < K
satisfying (15) we need to establish (16) and (17) for k;(¢ty+1). It is enough to
consider only the intervals [a;, o; + /2] for which k;(t,4+1) = k;i(¢,) + 1. We break
the analysis in two cases:

Case I k;(t,) is odd, then it follows that k;(t, 1) = ki(t,) +1 <2 Uy /24,.0:(9,2) <
2 Uy 2,t,11,0:(9,2) hence (17) holds for the case when k;(t, 1) is even.

Case II: k;(t,) is even, then it follows from our definitions that

(18) gt,(x) < ai and gy, (x) = (a; +1n/2).

From the inductive hypothesis we know that k;(t.) <2 U, 24, (9, 7).

It follows from the definition of k;(t,4+1) and the fact that it is an odd number that
Unj2,trir,ai (9, T) > %, hence k;(ty11) <2 Uy/24,,1,a;: (9, T) as was required
to prove. Let now J, x(g,2) = n, therefore, there is an increasing sequence of
integers u; = ui(z), -1 < up < w3 < ..., < u, < K,i = 0,...,n such that
|Gus i1 (%) = guy, (x)| > 7 for all k = 0,...,n holds. Given that g is bounded below
by zero, we can take ug = —1 without loss of generality. We then have

(19) n <Y ki(un) <2 Uppokai(9,7) =2 Uz k(9,7)

i=0 1=0

where the first inequality follows from the definitions and the second one follows
from equations (16) and (17). O

For the definition and a discussion of the function wy, k (S, ) which appears in
the proof of the next lemma we refer to Appendix B, at this point we just notice
that Uy k,o(S,2) < wy, k,o(S, ) (where the notation S = {S,(z)} was introduced
in Section 1).

Lemma 2. Let ¢ = {qn(z)} be an admissible sequence, assume both f and ch_z
belong to L*(X) and f(z) > 0. Then:

4 [ f(x) 6/
20 x) J, S, x) du(x) < — dp + — x) du.
@) [ w@) T(Sa) dute) < o [ L aue S [ ) a
Proof. Similarly to Definition 5, let a; =4 g for i =0,... and set:

w%,K(S) T) = Zw%,K,ai(S) z).
i=0

From Lemma 1 applied to the sequence S = {S,(z)} we obtain:

(21) Jn,K(Svm) < 2w%,K(S>x)'
Notice that if N(z) = Lfmﬁggj is the integer part of zqﬁgg it follows that
i<N(z) . 9
in qo() (f (z) 3f(33)>
22 x) — < + .
22) S -0 < (L, 37
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We remark that in Appendix B we indicate that Theorem 3 is applicable to both

sequences Sp(z) = A, f(z) and S,(x) = P,f(z). Using (22) and Theorem 3 we
compute:

> / 00(2) W3 k.00 (5,2) dp(z) < —Z / ) — i o)), du(a)

<2 z / o T =01 ) dua)
i<N(z)

<z / Z 'L n QO( )) d,u(a:)

<2

f2
o ) due) + : / £() dy(z)

/qo< ) Tk (S,2) du(z) < /2q0< 2) g (S, 2) du(z)

f(x) 6 .
qo() i+ n/f( ) du

Hence (20) is proven. O

Hence by Fubini’s theorem,

Theorem 2. Let ¢ = {q,(z)} be an admissible sequence, assume both f and L

belong to L*(X) and ¢ is a positive and increasing function defined on the integers
so that

(23) 2 C(;

Then for any nonincreasing sequence 1y tending to 0, we have the following asymp-
totic result:

(24) Tnen (S,2) M3 = 0 (C(2N)) a.u.

Proof. Notice that to prove (24) it is enough to consider the case when f(x) > 0, this
is so because if f = fi — f_ we have J,,(f)(S,z) < Jp/2(f+)(S,2) + Jp/2(f-)(S, z).
Let 7, be a nonincreasing sequence such that n; N\, 0.

Using (20) we have

(25)
2
Z/qo ) 0 (S,2) du) <4 N [ L8 du@y o m & [ 10) auto)

If we take (N) = N ((N), #(N) = N and k,, = 2" we have

(26) Z o(k "* )

o0
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If we let fi(z) = n? qo(x) J,,(S,2) in Theorem 1, equations (8) and (9) from
Theorem 1 hold and (10) 1mphes
N-1

(27) Z I (S, 2) = 0 (N ((N)) au.

We now indicate that by hypothe31s Nk is a decreasing sequence and that J,, (S, x)
is increasing as ny goes to zero. It follows then

2N—1 ( 1)
(28) Z nk le S :L‘ = ngNJﬂN(Svm)'
Hence from (27)
(29) Mo Jan (S,2) = 0(C(2N)) au
then (24) follows.
n+42
It is easy to obtain an explicit modulus of convergence by taking a,, = % =
2
16 WUQ with ¢, = * a,)"'/2 in Theorem 1 and backtraking the computations
¢(2n+1) r=n
in that theorem to Lemma, 3. O

Corollary 1. Let g and f(z) be as in the previous theorem. Then for any positive,
increasing function \ defined on (0,00) such that

(30)

<
e T
we have the following asymptotic result in n \ 0:

(31) Ty(S,2) n* = 0o (A(1/n)) a.u.
Proof. To establish (31) it is sufficient to prove the asymptotics:
(32) Jo-n(S,z) 272N =0 (A2V7)) a.u.

In fact, given 0 < 1 < 2 there exists an integer N = N(n) such that 2=V <5 <
27N+ and then

Jy(S,x) n* < Jy -~ (S, x) 22N+
=4 Jy-~n(S,z) 272V,
And as A(2V71) < A\(1/n) we have that:
J,(S.5) 1 _ | Ty n(S.) 22N
A m) — AN

Observe that n N\, 0 implies N = N(n) oo, thus (32) implies (31). If we take
N =2"n, =1 and ((z) = A(%) and apply Theorem 2, we have that:

(33) L he(8.) 27 =0 (A2Y ) am
Then (31) follows. U

Corollary 2. Let f(z) be as in the previous theorem. Then for any ¢ > 0 and
integer r > 0 we have the following asymptotic result in n \, 0:

(34)  Jy(S,2) n* = o((log,(1/m)) ... (log,_ (1/m))(log,(1/n))'**) a.u.
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Proof. This result follows from the convergence of the series:

o0
1
(35)
2 g @) o, @) log, @)
and the above theorem. O

As mentioned previously, the results for Chacon-Ornstein averages Sy, (z) = A, f(x)
specialize to the Cesaro averages by taking ¢,(z) = 1 and assuming the extra
condition T'1 < 1.

APPENDIX A. BACKGROUND RESULTS
We need the following result about series:

Proposition 1. Leta, be a sequence of nonnegative real numbers such that Y~ o ap <
00. Then there exists an unbounded nondecreasing sequence of positive real numbers
qn Such that > qna, < oo.

Proof. If only a finite number of the a, are non zero the proposition is trivial.
Now, we suppose that there are infinite nonzero a,, in this case we take ¢, =
(3% a,)~'/2, obviously g, is an unbounded nondecreasing sequence of positive

realriﬁmbers which satisfy
2 a2 1 1
(36) gnan = 11" 00 (— - )
In4+19n dn qn+1
Since Y oo, (an - qnlﬂ) = .- we have that Y72 ; guan < co. O
Lemma 3. Given a sequence of functions a, € L'(X),n =0,1,... with a,(z) >0
if
o0
(37) Z /an(:r) du(z) < oo
n=0
then
(38) an(z) = o(1) a.u.

Proof. Let an > [ an(z) du(z) with 3 ja, < co and ¢, as in Proposition (1).
Let 01 > 0 and Ny = N(6;) be such that

00
Z Intn < 61

n:N1

Define B={x € X : In > Ny guan(z) > 1}. Let B, = {z € X : qpan(x) > 1},
since B C J,_ n, Bn we have

o0 o0 o0
MBS Y nB) < > [ (o) du(o) < Y dnen <0
n=N1 n=N1 B, n=N1
Now given d, > 0, choose Na, such that No > Ny and ¢, > 1/d5 Vn > N,. Then
for all z € B¢ a,(z) < d2, Vn > Na. O

Remark 2. It is clear that we can obtain qnpan(x) = o(1) a.u. by iterating Lem-
ma &, however, this stronger statement will not improve the asymptotic given

by (24).
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APPENDIX B. UPCROSSING INEQUALITIES

Here we describe Bishop’s general results on upcrossing inequalities as present-
ed in [2]. The general result represents a constructive outgrowth of the Chacon-
Ornstein theorem. Let T be a linear operator on L' such that T' > 0 and ||T'f||; <
||f|l1 for all f € L'. Let {fo, fi,...,fx} denote a set of measurable function-
s such that (f;)+ € L' and T(Xjeq fi)+ > > jecq fi+1 for any finite subset
Q c {0,...,K — 1}. Moreover, measurable functions p;(z) > 0,i = 0,... ,K
are given such that Tp;(z) < pi+1(z). We now define an integer valued function
wi (x):

(39) wi () = sup{k: ¢ = (U, Vp)p=1, k.}

where the sequence ( satisfies,

(40) 1<y <m<us<...<v <K

(41) i:fj(m)gi:(f](a:)—p](x)) r=1,...,k
and

(42) Z fi(x) gi(fj(x)—pj(x)) r=1,...,k—1

To specialize these general definitions to count upcrossings for the Chacon-Ornstein
averages A, f(r) take: fj(z) = TVf(z) — a ¢;(z)) and pj(z) = n gj(z). To
specialize the general definitions to count upcrossings in the setting of power-
s of T namely P,f(z) take: f;j(z) = T7f(z) — T9"'f(z) — a gj(x) for j > 1,
fo(z) = f(z) a go(x) for j = 0 and p;(xz) = n g;(x). Each of this specializations
will define a function wg (z), denote by wy k.o (S, ), that satisfies the property:
Unpi,a(S,z) < wyr,a(S,z). For the case f(z) > 0, a > 0, n > 0, Bishop’s
theorem ([2]) in both settings is:

Theorem 3.
/ Po(2) W .a(S,7) du(z) < / (f(@) - @ q0(@))s du(z).

The key property Uy, k.o < Wy K,a, is easily proven. Bishop also indicates ([2])
that further specializations of the general result imply that wg (z) becomes a ma-
jorization for the number of upcrossings in the context of Lebesgue’s differentiation
theorem and martingale convergence theorem. This indicates that analogous of our
Theorem 2 are plausible in these other settings as well.
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